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Abstract

The behavior of the finite-difference time-domain method (FDTD) is investigated with respect to the approximation of
the two-dimensional Laplacian, associated with the curl–curl operator. Our analysis begins from the observation that in a
two-dimensional space the Yee algorithm approximates the Laplacian operator via a strongly anisotropic 5-point approx-
imation. It is demonstrated that with the aid of a transversely extended-curl operator any 9-point Laplacian can be mapped
onto FDTD update equations. Our analysis shows that the mapping of an isotropic Laplacian approximation results in an
isotropic and less dispersive FDTD scheme. The properties of the extended curl are further explored and it is proved that a
unity Courant number can be achieved without the resulting scheme suffering from grid decoupling. Additionally, the case
of a 25-point isotropic Laplacian is examined and it is shown that the corresponding scheme is fourth order accurate in
space and exhibits isotropy up to sixth order. Representative numerical simulations are performed that validate the the-
oretically derived results.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The Yee algorithm is undoubtedly one of the most popular finite-difference (FDTD) approximations to
Maxwell’s equations, mainly due to its conceptual simplicity and ease of implementation. Its main character-
istic is that Maxwell’s equations are treated in a coupled curl form, and in a leapfrog time-stepping manner. In
addition the involved first order partial derivatives are approximated via second order accurate central finite
differences, on a staggered spatio-temporal grid arrangement. Yet, the scheme suffers from numerical disper-
sion as well as phase velocity anisotropy. Their deteriorating effects become very pronounced when the prob-
lems under study involve long integration times or results are required over a wide frequency range.
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Obviously, the naive approach to mitigate the effects of these drawbacks is to use finer grids, however this is
not always feasible due to the increase of computational cost.

The inherent dispersion and anisotropy errors of the Yee algorithm have so far stimulated a great research
effort towards the development of improved FDTD schemes. The latter can be viewed as different flavors of
the Yee algorithm since they retain many of its characteristics. The reasonable trend in order to tackle the dis-
persion and anisotropy errors is to employ higher order approximation to the first order partial derivatives.
This path has been successfully followed by many researchers. Selectively we mention the work of Fang in
[1] and Yefet and Petropoulos in [2], where second order accurate in time and fourth order accurate in space
schemes were presented. Along similar lines Zygiridis and Tsiboukis in [3] as well as Sun and Trueman in [4]
optimized versions of the Fang scheme were derived by appropriately modifying the weights of the spatial
derivatives’ approximation. Also Hadi and Piket-May in [5] proposed an improved (2,4) scheme by applying
Ampere’s law on several loops. An alternative formulation is the one presented by Young et al. in [6]. The
proposed scheme combined compact finite differences [7] for the spatial derivatives, with a Runge–Kutta inte-
grator for time advancement. Of particular interest are those FDTD schemes developed on hexagonal grids,
such as the one presented by Liu in [8] and recently by Xiao et al. in [9], which exhibit superior isotropy char-
acteristics and reduced dispersion errors. Furthermore, in [10] dispersion error reduction was achieved by
introducing artificial anisotropy in the regular FDTD update equations. This can be done through appropriate
modification of the constitutive parameters of the modeled material. The material properties can be tuned and
dispersion characteristics can be optimized with respect to a single frequency. Finally Wang and Teixeira in a
series of papers [11–15] gave an elaborate analysis on how to eliminate the dispersion error over a certain fre-
quency bandwidth or a particular angular span. Note that a detailed comparison of several low-dispersion
schemes can be found in [16], while a very informative listing of past and current trends in FDTD improve-
ment can be found in [17]. Another low-dispersion time-domain scheme is the pseudo-spectral time-domain
(PSTD) method pioneered in the area of electromagnetics by Liu [18,19] and still being expanded and refined
[20]. A very detailed overview of higher order time-domain methods has been given by Hesthaven in [21].
Finally, Kantartzis and Tsiboukis in [22] have given an exhaustive and mathematically elaborate description
of higher order FDTD schemes. This work includes a collection of the authors’ contributions in the field, such
as [23,24], as well as an overview of general higher order FDTD strategies.

Our approach is motivated by the fact that Maxwell’s equations essentially propagate electromagnetic
waves through the curl–curl operator, whose fundamental element is the two-dimensional transverse Lapla-
cian operator. Unfortunately, since FDTD works with Maxwell’s equations in individual curl form, the exis-
tence of this term is masked and hence its importance can be easily neglected. This is further supported by the
fact that the Yee algorithm, during a time-step, indirectly approximates the ‘‘hidden’’ Laplacian term via a
strongly anisotropic 5-point representation. As lucidly demonstrated in Section 2 this is solely responsible
for the scheme’s poor isotropy performance. Consequently, its amelioration is likely if the Laplacian term
is approximated more accurately. Obviously since the direct mapping of a Laplacian approximation into
FDTD updating is impossible, the goal is to improve the curl operator in FDTD in such a way that it yields
indirectly a ‘‘good’’ and ‘‘as isotropic as possible’’ transverse Laplacian. The derivation presented here thus
starts from a transverse Laplacian that is best seen in a homogeneous isotropic space; but the final result, more
effective curl operators, then can be applied in the arbitrary anisotropic, inhomogeneous case. Similarly, for
clarity and simplicity a 2-D space is treated but the application to 3-D is direct as evidenced in [25].

The development presented here will proceed as follows: In Section 3 it is shown that in a 2-D space only
the curl operator that lies on the same plane with the transverse Laplacian needs to be modified resulting on
what we refer to as the extended-curl operator. As further demonstrated in Section 3 the latter allows mapping
of any 9-point Laplacian onto FDTD update equations. The scheme that corresponds to the most isotropic
9-point Laplacian is shown to be characterized by superior isotropy, less dispersion and a higher Courant num-
ber. Moreover, further experimentation with the extended-curl schemes reveals that a unity Courant number can
be supported (Section 5). As a matter of fact there is an infinite number of extended-curl realizations that exhi-
bit this feature. Finally in Section 8 it is shown how this formalism can be extended to the case of a 25-point
isotropic Laplacian, resulting in a ‘‘hyper-isotropic’’ scheme. As a final comment it should be mentioned that
our approach should not be confused with those that approximate the 2-D and 3-D Maxwell’s equations with
the 2-D and 3-D scalar wave equations, respectively. This is better justified from the 3-D formulation of our
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method, where the extended-curl operators are defined with respect to the 3 transverse 2-D Laplacians and not
by the 3-D one [25]. Also it should be noted that throughout this document the second order accurate leapfrog
scheme is adopted for time integration.

2. Motivation

The approach presented herein stems from the fact that Maxwell’s equations, in the case of a linear, iso-
tropic, and homogeneous medium, propagate electromagnetic waves essentially through the curl–curl
($ · $ ·) operator as seen in the well-known vector wave equation:
r�r� E ¼ �leo2
ttE ð1Þ
In the general case of a divergenceless field, the curl–curl operator can be separated explicitly into a transverse
Laplacian and cross terms. For instance, taking the z-component of (1) we have
�leo2
ttEz ¼ ðr �r� EÞz ¼ ozðoxEx þ oyEyÞ � r2

xyEz ð2Þ
It can be seen that the right hand side of (2) consists of two terms, one of which is a 2-D Laplacian, transverse
to the direction of the component under consideration. Therefore, it can be concluded that the 2-D Laplacian
is a fundamental element of the 3-D curl–curl operator, or that the 2-D Laplacian is implicit in the two suc-
cessive curl operations.

Here, we consider a two-dimensional space and a transverse, with respect to z, electric (TEz) field polari-
zation. (The same analysis can be carried out for the TMz case as well.) For the 2-D TEz case, the time-domain
Maxwell’s equations are given by
otH z ¼
1

l
ðoyEx � oxEyÞ ð3Þ

otEx ¼
1

e
oyHz ð4Þ

otEy ¼ �
1

e
oxHz ð5Þ
The most popular discrete approximation to this set of equations is the finite-difference time-domain (FDTD)
method introduced by Yee [26], and later expanded and refined by various researchers [27,28]. The method
assumes a staggered field arrangement both in space and time; it employs second order accurate central finite
differences for the approximation of spatial derivatives, and the leapfrog scheme for time integration. The cor-
responding equations comprise what is referred to as the ‘‘Yee-scheme’’ or ‘‘conventional FDTD’’, and they
are given by
dtH zj
nþ1

2

iþ1
2;jþ

1
2

¼ 1

l
dyEx

��nþ1
2

iþ1
2;jþ

1
2
� dxEy

��nþ1
2

iþ1
2;jþ

1
2

� �
ð6Þ

dtExjniþ1
2;j
¼ 1

e
dyHz

����n
iþ1

2;j

ð7Þ

dtEy

��n
i;jþ1

2
¼ � 1

e
dxHz

����n
i;jþ1

2

ð8Þ
where
dxui ¼
uiþ1

2
� ui�1

2

Dx
and dtun ¼ unþ1

2 � un�1
2

Dt
ð9Þ
Due to the two-stage ‘‘time-marching’’ nature of the leapfrog scheme, Eqs. (6)–(8) are referred to as the
‘‘FDTD update equations’’ for conventional FDTD. Notice that in this formulation Maxwell’s equations
are treated as a first order system of two coupled curl equations. Evidently, the existence of the Laplacian term
is masked, meaning that the latter is not directly computed during an FDTD calculation. Conceptually, the
indirect generation of the Laplacian approximation means that the Yee-scheme Laplacian results by default
and not by purposeful choice. In what follows the accuracy of this approximation is examined.
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Fig. 1. Curl–curl approximation in the Yee-scheme.
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Hence, let us examine the updating sequence during a time-step that leads to the computation of the Hz

component. Notice that for this field mode, ($ · $ ·)z reduces to r2
xy , since it has been assumed that there

is no variation along the z-direction. In order to get a better insight into the above scenario, consider the
graphical representation in Fig. 1. The FDTD formalism dictates that the value of Hz iþ 1

2
; jþ 1

2

� �
at the

(n + 1)th time-step is obtained as a sequence of two curl operations, performed on magnetic and electric fields,
respectively. Referring to Fig. 1 and going backwards in time, we see that Hz iþ 1

2
; jþ 1

2

� �
is computed as a

weighted sum of four curling electric field components. This is because conventional FDTD approximates
the curl operator component ($ · E)z through a 4-point discretization. In the same fashion, these electric field
components are computed by two curling magnetic field components (not four since it has been assumed no
variation along the z-direction) at time-step n, with the one located at the center contributing four times in
total. Therefore, we can see that the variation of H z iþ 1

2
; jþ 1

2

� �
within a time-step is determined by its spatial

variation represented by a 2-D Laplacian, transverse to its direction (z), where the Laplacian is approximated
as
r2
xyHz iþ 1

2
; jþ 1

2

� �
� �4Hz iþ 1

2
; jþ 1

2

� �
þ H z iþ 3

2
; jþ 1

2

� �
þ Hz i� 1

2
; jþ 1

2

� �
þ Hz iþ 1

2
; jþ 3

2

� �
þ H z iþ 1

2
; j� 1

2

� �
ð10Þ
Accordingly, it can be concluded that the 4-point curl discretization performed by the Yee-scheme results in
the strongly anisotropic 5-point Laplacian approximation given by
r2ui;j ¼
1

h2
½�4ui;j þ ðuiþ1;j þ ui�1;j þ ui;jþ1 þ ui;j�1Þ� �

h2

12
o4

x þ o4
y

� �
ui;j þOðh4Þ ð11Þ
where h is the spatial increment. The strong anisotropy of (11) is due to its leading error term (LET); it exhibits
dispersion properties dependent on the propagation angle, and consequently introduces dispersion error
anisotropically in the computational domain. Given the above, it is intuitively expected that superior FDTD
accuracy could be achieved if a more accurate Laplacian representation was employed. In what follows, first a
more accurate version of the discrete Laplacian is presented. Afterwards, it is demonstrated how the update
equations should be modified, so that the more accurate Laplacian representation is utilized.

3. Formulation

The approximation in (11) is a member of the family of 9-point Laplacian approximations whose general
form is given by [29,30]
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r2uij � c0ui;j þ c1ðuiþ1;j þ ui�1;j þ ui;jþ1 þ ui;j�1Þ þ c2ðuiþ1;jþ1 þ uiþ1;j�1 þ ui�1;j�1 þ ui�1;jþ1Þ ð12Þ

where c0, c1 and c2 are properly chosen coefficients. It is easy to verify that the highest accuracy that can be
achieved from (12) is second order. However by judiciously choosing c0, c1 and c2 one can obtain the following
Laplacian approximation:
r2ui;j ¼
1

6h2
½�20ui;j þ 4ðuiþ1;j þ ui�1;j þ ui;jþ1 þ ui;j�1Þ þ ðuiþ1;jþ1 þ uiþ1;j�1 þ ui�1;j�1 þ ui�1;jþ1Þ�

� h2

12
r4ui;j þOðh4Þ ð13Þ
In particular the derivation of the above requires us to first perform a 2-D Taylor expansion on (12). Then c0,
c1 and c2 are subjected to appropriately chosen conditions so that second order of accuracy is obtained, and
the corresponding LET turns out to be the biharmonic operator, which yields a 4th order isotropic
approximation.

For the 9-point Laplacians’ family, the combination of c0, c1 and c2 that yields the biharmonic operator is
unique. Moreover, the latter is the highest degree of isotropy that can be achieved. If a higher degree of isot-
ropy is required then widened Laplacian stencils must be employed. This will be further elaborated later in this
paper.

Let us now determine how to modify the update equations so that the 9-point Laplacian of (13) is indirectly
computed. Recall that the ultimate objective is to modify the update equations so that the value of any Hz

component at any time-step is determined by nine appropriately weighted Hz components from the previous
time-step. First the update equations’ stencil needs to be chosen so that a 9-point Laplacian stencil is retrieved.
There are two ways to achieve the above and these are depicted in Fig. 2(a) and (b).

The first approach [Fig. 2(a)] is to retain a 4-point discretization, like the Yee-scheme suggests, for the curl
operation that results to an Hz component update. However, for the update of Ex and Ey a flux-averaging

strategy is required in order to ‘‘reach out’’ for the diagonally located Hz’s. With respect to Fig. 2(a) it can
be seen that the Ey component depicted by the thick arrow is updated not only by the immediately neighboring
Hz components, but also by the ones defining the flux in the upper and lower cells, with respect to the updated
component’s vector direction (also shown thick).

The second approach is shown in Fig. 2(b). In this case a complementary strategy is adopted: for the updat-
ing of both the Ex and Ey components only the immediately neighboring Hz’s are used, similar to what the
Yee-scheme suggests. However, we modify the curl approximation that lies on the same plane on which the
Laplacian is defined (for this problem the x–y plane). This modification suggests that the curl operator that
Update equations’ modification for a 9-point Laplacian representation. The thick arrows indicate curl-related components between
t half time-step.
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results in an Hz component update be longitudinally extended. Essentially this is a longitudinal extension of
the curl-related derivatives, with respect to the direction of the derived component, and it will be referred to as
the extended-curl operator.

The choice between the two approaches is made based upon their ability to provide physically meaningful
results. First of all, one notices that for this TEz field configuration the magnetic Gauss’ law is exactly satisfied
since
otr � ðlHÞ ¼ otðox; oy ; 0Þ � ð0; 0;lHzÞ ¼ 0 ð14Þ

The above suggests that no matter how the Hz update equation is modified in this 2-D space, magnetic flux
conservation is always satisfied. In contrast, the modification of the electric field components update equations
is more restricted since it is not always guaranteed that electric flux is preserved. Hence it becomes apparent
that retaining the Yee algorithm update equations for Ex and Ey, is a very convenient and accurate ‘‘tactic’’
since the electric flux conservation is automatically satisfied [27], i.e.
dt dxDxjni;j þ dyDy jni;j
� �

¼ 0 ð15Þ
which is the discretised version of the electric Gauss’ Law, i.e.
otr � ðeEÞ ¼ 0 ð16Þ

Bearing this in mind, it is obvious that the flux-averaging approach does not comply with the above scenario.
In particular, electric flux is not conserved and consequently its implementation will provide with solutions
infested by spurious solutions. In contrast, the extended-curl approach is in absolute agreement with both
of the Gauss’ laws. Accordingly, this approach is followed for the development of our scheme.

To complete the determination of the extended-curl operator its weights need to be specified. From the pre-
vious discussion the updating equation for Hz is given by
dtHzj
nþ1

2

iþ1
2;jþ

1
2

¼ 1

l
b dyExj

nþ1
2

iþ3
2;jþ

1
2

� dxEy j
nþ1

2

iþ1
2;jþ

3
2

� �
þ a dyExj

nþ1
2

iþ1
2;jþ

1
2

� dxEy j
nþ1

2

iþ1
2;jþ

1
2

� �
þ b dyExj

nþ1
2

i�1
2;jþ

1
2

� dxEy j
nþ1

2

iþ1
2;j�

1
2

� �h i
ð17Þ
where a and b are arbitrary real numbers. Recall that for Ex and Ey, we resort to the standard update equa-
tions, that is (7) and (8). Now, if we apply the sequence of these update equations for a time-step cycle as de-
picted in Fig. 2(b), then the resulting Laplacian approximation of any Hz component is given by
r2uij �
1

h2
½�4aui;j þ ða� 2bÞðuiþ1;j þ ui�1;j þ ui;jþ1 þ ui;j�1Þ þ 2bðuiþ1;jþ1 þ uiþ1;j�1 þ ui�1;j�1 þ ui�1;jþ1Þ�

ð18Þ

where uij � Hzðiþ 1

2
; jþ 1

2
Þ. The values of a and b for any desired Laplacian approximation are given by equat-

ing like terms in (18) and (12). For instance (13) corresponds to the following extended-curl weights:
�4a ¼ �20=6

2b ¼ 1=6

a� 2b ¼ 4=6

9>=>;)
a ¼ 5=6

b ¼ 1=12

a� 2b ¼ 4=6
where obviously the third equation is satisfied by the calculated values for a and b.

4. Stability and dispersion analysis

Let us consider first the scheme that corresponds to (13), that is the extended-curl operator weighted with
a = 5/6 and b = 1/12. In order to investigate the proposed scheme’s stability, a 2-D unbounded, linear and
homogeneous space is assumed. The time-step bound that ensures stability can be obtained by employing a
standard von Neumann analysis. This requires that spatial discrete Fourier modes of the form
un
i;j ¼ ûnð~kx; ~kyÞe�jð~kxiDxþ~ky jDyÞ ð19Þ
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are substituted into the update equations (7), (8) and (17). ~k denotes the discrete wavenumber which, for an
ideal FDTD algorithm, should be equal to the physical wavenumber, k = x/c. The resulting equations can be
cast into the following matrix form:
ûnþ1 ¼ Gûn ð20Þh i

where ûn ¼ bEnþ1

2
x bEnþ1

2
y bH n

z

T

is the field component vector, G is the amplification matrix given in (21)
G ¼
1 0 2jnySy

0 1 �2jnxSx

2jfySy �2jfxSx 1� 4nyfyS
2
y Cx � 4nxfxS

2
xCy

0B@
1CA ð21Þ
Also, nw = Dt/eDw, fw = Dt/lDw, Sw ¼ sinð~kwDw=2Þ, Cw ¼ aþ 2b cosð~kwDwÞ with w 2 {x,y}. The eigenvalues
of the amplification matrix are the following:
k1 ¼ 1; k2;3 ¼ 1� 2W	 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�WþW2

p
ð22Þ
where W ¼ nxfxS
2
xCy þ nyfyS

2
y Cx. The scheme is stable if all eigenvalues lie within the unit circle. This condition

is satisfied when the time-step is subjected to the following constraint:
Dt 6 c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

xCy

Dx2
þ

S2
y Cx

Dy2

s0@ 1A�1

ð23Þ
where c ¼ 1=
ffiffiffiffiffi
el
p

is the speed of light in the material being modeled. The CFL condition is obtained if in the
above inequality we set Dx = Dy = h, and substitute the maximum value of S2

xCy and S2
y Cx. Thus
Dt 6
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ða� 2bÞ
p h

c
¼

ffiffiffi
3
p

2

h
c

ð24Þ
where we recall that a = 5/6 and b = 1/12 for our scheme. Notice that if we had chosen (a,b) ” (1,0) we would
recover the standard FDTD curl, and (24) would yield the Courant limit of the conventional 2-D FDTD
scheme, i.e. S ¼

ffiffiffi
2
p

=2.
The dispersion relation can be derived if we assume discrete temporal Fourier modes in (19), in addition to

the spatial ones, or ûn ¼ û0ejxnDt. Hence (20) yields the following eigenvalue problem:
St 0 �nySy

0 St nxSx

�fySyCx fxSxCy St

264
375

bE0
xbE0
ybH 0
z

2664
3775 ¼ 0 ð25Þ
where St = sin(xDt/2). For non-trivial solutions of (25), the determinant of system matrix must be zero.
Hence, after some straightforward manipulations, the dispersion relation for the scheme is found to be
1

cDt
sin

xDt
2

� �
 �2

¼ S2
xCy

Dx2
þ

S2
y Cx

Dy2
ð26Þ
If we Taylor-expand (26) with respect to both the temporal and spatial variables, the scheme’s accuracy can be
obtained. Hence we have
x
c

� �2

þOðDt2Þ ¼ ~k2
x þ ~k2

y �
1

12
Dx2~k4

x þ Dy2~k4
y þ ðDx2 þ Dy2Þ~k2

x
~k2

y

h i
þOðDx4Þ þOðDy4Þ ð27Þ
Obviously the scheme is second order accurate both in space and time. However, if we write the wavevector in
polar form as ð~kx; ~kyÞ ¼ ~kðcos /; sin /Þ and further assume a uniform discretization, then the spatial LET in
(27) yields
LET ¼ h2 ~k4
x þ ~k4

y þ 2~k2
x
~k2

y

� �
¼ h2 ~k2

x þ ~k2
y

� �2

¼ h2~k4



520 A.H. Panaretos et al. / Journal of Computational Physics 227 (2007) 513–536
Evidently, the LET in (27) is independent of the propagation angle, meaning that the scheme may be second
order accurate but it is fourth order isotropic. Note that for a non-uniform discretization the above result does
not hold, since the LET does not complete a perfect square. For comparison purposes, the approximation to
the constraint equation obtained by the Yee-scheme is given by (26) if we set a = 1, b = 0 and then Taylor
expand. One gets
x
c

� �2

þOðDt2Þ ¼ ~k2
x þ ~k2

y �
1

12
Dx2~k4

x þ Dy2~k4
y

� �
þOðDx4Þ þOðDy4Þ ð28Þ
where in this case, the spatial LET strongly depends on the direction of propagation as
LET ¼ h2 ~k4
x þ ~k4

y

� �
¼ h2~k4ðcos4 /þ sin4 /Þ
Also, in the limit of a very fine discretization (Dx! 0,Dy! 0), (27) reduces to the constraint equation that
governs the propagation of a monochromatic wave in a general 2-D medium. At this point it should be men-
tioned that the same order of isotropy as the one demonstrated in (27), can be achieved by FDTD implemen-
tations on hexagonal grids as has been demonstrated in Liu in [8] and Xiao et al. in [9]. However, the distinct
feature of the proposed algorithm is that it retains the simplicity of the Yee-scheme. Thus it is relatively pain-
less to implement existing techniques designed for the Yee-scheme such as absorbing boundary conditions,
whereas on a hexagonal grid this is not a trivial task.

5. Extended-curl realizations for a higher Courant number

The preceding analysis revealed that the extended-curl scheme corresponding to the isotropic 9-point
Laplacian is characterized by a more relaxed Courant limit, approximately 1.2 times higher than that of
the Yee-scheme. In what follows the highest achievable Courant number is investigated, assuming a and b
are arbitrary real numbers. More precisely, we are looking for 9-point Laplacian approximations that result
in extended-curl schemes with Courant number higher than S ¼

ffiffiffi
3
p

=2. For reasons that will become clear later
in our discussion, let us first examine if a unity Courant number can be achieved. S = 1 implies that
Dt 6
h
c
6

1

maxða;bÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

xCy þ S2
y Cx

qn o h
c

ð29Þ
which leads to the constraint
maxða;bÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

xCy þ S2
y Cx

qn o
6 1 ð30Þ
Now, if we Taylor-expand (26) we get
x
c

� �2

þOðDt2Þ ¼ ðaþ 2bÞ ~k2
x þ ~k2

y

� �
þOðDx2Þ þOðDy2Þ ð31Þ
The above relation in the limit of a vanishing cell size, should reduce to the constraint equation of a contin-
uous medium, therefore the following condition should hold:
aþ 2b ¼ 1 ð32Þ

Given this condition, it is straightforward to show that (Appendix A)
max
ða;bÞ

S2
xCy þ S2

y Cx

n o
¼ max

b
f1; 2� 8bg ð33Þ
If we substitute (33) into (30) and additionally assume that the square rooted quantity must be positive, we get
the following constraint:
1=8 6 b 6 1=4 ð34Þ

The system of (32) and (34) can be solved graphically as shown in Fig. 3. The solution pairs lie along the solid
line section CD, bounded by the dotted and dashed lines which means that for this continuum of a and b val-



Fig. 3. Determination of parameters a and b.
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ues, a Courant number S = 1 can be achieved. We refer to this group of extended-curl realizations as the
‘‘unity Courant number’’ schemes. As demonstrated later, there exists an optimum (a,b) pair, determined
by the scheme’s dispersion properties as well as the scheme’s ability to provide accurate results.

Before proceeding to the next section some remarks should be made. First, regarding the generalization of
the results presented thus far, we observe that (26) is the numerical dispersion relation that characterizes all
members of the extended-curl family including the ‘‘unity Courant number’’ schemes. Similarly, the general
time-step bound valid for all extended-curl realizations is the following:
Dt 6
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

maxbf1; 2� 8bg
p h

c
ð35Þ
For instance, if b = 0 the CFL condition for the Yee-scheme is obtained. The above expression reveals that the
extended-curl family of schemes cannot support Courant numbers that exceed unity. Clearly, for a Courant
number higher than one, the condition maxb{1,2 � 8b} < 1 should hold, which obviously is impossible.

The last remark can be also justified from the following reasoning. An alternative, although absolutely
equivalent, way to interpret the extended-curl schemes is as a combination of two Yee-schemes. As illustrated
in Fig. 4 the first one operates on a standard Cartesian grid comprising square cells with size h. The second one
exists on a p/4-rotated Cartesian grid, that consists of rhombic cells with size h

ffiffiffi
2
p

. The two grids are positioned
t=n

t=n+1/2

t=n+1

Hz

(i,j)

curl H

curl E

Fig. 4. Alternative extended-curl realization.
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so that each square cell of the Cartesian grid is inscribed into a rhombic cell. A rigorous justification of the
above is provided by the fact that an alternative representation of (18) is given by [30]
Table
Comp

Case

(1) Ye

(2) Th

(3) Po

(4) Po
r2ui;j �
a� 2b

h
uiþ1;j � ui;j

h
� ui;j � ui�1;j

h

� �
þ ui;jþ1 � ui;j

h
� ui;j � ui;j�1

h

� �h i
þ 2b

h
ffiffiffi
2
p uiþ1;jþ1 � ui;j

h
ffiffiffi
2
p � ui;j � ui�1;j�1

h
ffiffiffi
2
p

� �
þ ui�1;jþ1 � ui;j

h
ffiffiffi
2
p � ui;j � uiþ1;j�1

h
ffiffiffi
2
p

� �
 �
ð36Þ
If we correspond ui,j to H zðiþ 1
2
; jþ 1

2
Þ then the terms in the first pair of square brackets represent four discrete

curl operations which result in four electric field components that lie on the x–y plane, in a closed-loop, cir-
culating formation. These curl operations are performed on a Cartesian grid with cell size h, as indicated by
the denominators of the corresponding terms. Regarding the terms in the second pair of square brackets we
can conclude that they are a p/4-rotated version of the first ones, from their corresponding finite-difference
stencil. In addition their denominators reveal that the cell size is h

ffiffiffi
2
p

. Consequently, given that the maximum
time-step for the Yee-scheme, on a uniform grid is Dt ¼ h

c
ffiffi
2
p , then the same time-step for a cell size of h

ffiffiffi
2
p

be-
comes Dt ¼ h

c, which for a uniform Cartesian grid corresponds to a unity Courant number.
It should be mentioned here that Forgy in [31] proposed a scheme that combined a Yee with a staggered

collocated grid. Then he expressed the collocated components as an averaging of two adjacent Yee nodes and
he derived an equivalent scheme based solely on Yee nodes, which utilizes the extended-curl operator
described in this paper. Also, it should be noted that the compatibility between the staggered collocated
and the Yee grid, through the above averaging procedure, was first reported by Bi et al. in [32].

6. Anisotropy and dispersion error

In this section the phase velocity isotropy as well the dispersion error of the most interesting extended-curl
schemes are examined. These are the Yee-scheme, the most isotropic Laplacian scheme, and two of the unity
Courant number schemes, corresponding to points D and C of Fig. 3. Their properties are summarized in
Table 1. In order to examine the numerical phase velocity behavior versus propagation angle, it is required
to substitute ð~kx; ~kyÞ ¼ ~kðcos /; sin /Þ in (26), and then to solve iteratively the resulting transcendental equation
with respect to the numerical wavenumber ~k. Finally, the numerical phase velocity can be computed as
~vp ¼ x=~k.

The corresponding results for a discretization of k/10, and using the Courant stability limit are depicted in
Fig. 5. There is a strong correlation between the form of the LET shown in the last column of Table 1 and the
schemes’ isotropy performance. More precisely the bigger the number of cross terms o

4
xy by which the LET

deviates from the biharmonic operator, the worse the isotropy becomes. The dashed line (Case 2) exhibits
highly isotropic phase velocity characteristics corresponding to the most isotropic Laplacian approximation.
In the inset figure, there is a more detailed illustration of the phase velocity behavior for this case. It does fluc-
tuate as a function of the propagation angle, however the amplitude of this ripple is of the order of 10�4. Fur-
thermore, the dash-dotted-square-marker line (Case 3) is more isotropic compared to the conventional FDTD
scheme of Case 1, but less isotropic than Case 2. Nevertheless, this scheme has the distinguishing characteristic
that for propagation along the principal axes (/ = 0�, 90�) the ‘‘magic time-step’’ condition [27,33] is satisfied,
meaning that Dt = h/c and the dispersion error is totally eliminated for all frequencies. It is interesting to note
1
arison of the most representative extended-curl realizations

(a,b) S (c0,c1,c2) LET

e-scheme (1,0)
ffiffi
2
p

2 (�4,1,0) r4 � 2o4
xy

e most isotropic Laplacian 5
6 ;

1
12

� � ffiffi
3
p

2 � 10
3 ;

2
3 ;

1
6

� �
$4

int D in Fig. 3 3
4 ;

1
8

� �
1 �3; 1

2 ;
1
4

� �
r4 þ o4

xy

int C in Fig. 3 1
2 ;

1
4

� �
1 �2; 0; 1

2

� �
r4 þ 4o4

xy
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that, the schemes that correspond to Cases 1 and 3 exhibit complementary anisotropy characteristics, with the
Case 3 one being overall more isotropic. Finally, Case 4 exhibits the most anisotropic phase velocity, and in
particular, the value of the phase velocity minimum at / = 45� has been significantly decreased, compare to
Case 3. Not only does this severely deteriorate the scheme’s isotropy but it also has a detrimental effect on the
dispersion error as shown next.

A practical measure of the scheme’s performance with respect to the dispersion error reduction is the max-
imum absolute phase error per wavelength, defined as
w ¼ 360
max
/

1� ~vp

c

���� ����� 

ð37Þ
In Fig. 6 the dispersion error for the four cases is illustrated as a function of the number of cells per wave-
length (Nk = h/k). Clearly all schemes are second order accurate since the slope of each curve is �2. Moreover,
Cases 2 and 3 suffer less from dispersion errors than conventional FDTD. In contrast, Case 4, as expected
from the previous analysis, exhibits the worst dispersion characteristics. At this point it can be asserted that
Cases 3 and 4 correspond to the best and worst ‘‘unity Courant number’’ schemes, respectively. All other com-
binations of (a,b) pairs exhibit isotropy and dispersion characteristics within the performance bounds defined
by Cases 3 and 4.
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In Fig. 7 the anisotropy error for each case is plotted as a function of resolution Nk. We have chosen to
define the anisotropy error as the difference between the maximum and minimum value of ~vp, relative to
the speed of light c. It can be seen that as (27) predicts, the Case 2 scheme exhibits fourth order anisotropy
error, in contrast to the other three schemes, which are second order isotropic.

Now, let us further examine the behavior of the ‘‘unity Courant number’’ schemes for different values of the
(a,b) pair, that lie on the CD section of Fig. 3. The analysis in the last paragraph of the previous section
revealed that an equivalent expression for the update equation of H z iþ 1

2
; jþ 1

2

� �
is given in the following

form:
dtHzjnþ1
iþ1

2;jþ
1
2
¼ 1

l
ða� 2bÞðr � EÞYee

z þ 4bðr � EÞrot-Yee
z

h inþ1

iþ1
2;jþ

1
2

ð38Þ
Apparently, this is a linear combination of two flux terms: one defined on a regular FDTD grid, and a second
one defined on a p/4-rotated version. These are denoted as ðr � EÞYee

z and ðr � EÞrot-Yee
z ; respectively. Hence,

at point D we have a� 2b ¼ 4b ¼ 1
2
. This condition indicates that the two flux terms in (38) contribute equally.

However, as we move from D to C, or equivalently as a! 2b, the Yee flux term gradually vanishes, while the
other term increases. In the limit, at point C, the flux is due entirely to the rhombic-cell grid arrangement. This
scheme, based solely on a p/4-rotated square cell, has been shown to be equivalent to a finite-difference scheme
developed on a staggered collocated grid [34,35]. The detrimental characteristic of the latter is that when ex-
cited by localised sources, it suffers from grid decoupling [8,34]. Consequently, from the ‘‘unity Courant num-
ber’’ schemes, the choice of (a,b) ” (3/4, 1/8) is optimal, not only because it renders the most isotropic and the
least dispersive scheme, but in addition because it prevents the development of the non-physical grid-decou-
pling effect.

7. Conservation properties of the extended-curl scheme

Some interesting conclusions, regarding the scheme’s charge conservation properties, can be drawn from
the numerical dispersion matrix shown in (25). The following approach was initially implemented by
Celuch-Marcysiak and Gwarek in [36]. Hence, from the first two equations we have
St
bE0

x � nySy
bH 0

z ¼ 0

St
bE0

y þ nxSx
bH 0

z ¼ 0

)
)

StnxSx
bE0

x � nxnySxSy
bH 0

z ¼ 0

StnySy
bE0

y þ nxnxSxSy
bH 0

z ¼ 0
ð39Þ
Then if we add the above two equations, we get
St nxSx
bE0

x þ nySy
bE0

y

� �
¼ 0 ð40Þ
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or
1

Dt
sin

xDt
2

� �
1

Dx
sin

~kxDx
2

 !
ebE0

x þ
1

Dy
sin

~kyDy
2

 !
ebE0

y

" #
¼ 0 ð41Þ
Now, given the following Fourier pairs:
Ffdxg ! �
2j

Dx
sin

~kxDx
2

 !
and Ffdtg !

2j

Dt
sin

xDt
2

� �
ð42Þ
we can conclude that (41) is the spatio-temporal Fourier transform of (15). Consequently with the aid of the
numerical dispersion matrix, we have verified the conservative nature of the scheme.

Let us now examine the conservation properties of the flux-averaging scheme using the previous approach.
The numerical dispersion relation in matrix form for this scheme is given by
St 0 �nySyCx

0 St nxSxCy

�fySy fxSx St

264
375

bE0
xbE0
ybH 0
z

2664
3775 ¼ 0 ð43Þ
Again, by combining the first two equations we obtain
1

Dt
sin

xDt
2

� �
1

Dx
sin

~kxDx
2

 !
ebE0

x þ
1

Dy
sin

~kyDy
2

 !
ebE0

y

" #

¼ 2b
DxDy

sin
~kxDx

2

 !
sin

~kyDy
2

 !
½cosð~kxDxÞ � cosð~kyDyÞ� bH 0

z ð44Þ
Obviously, the flux-averaging scheme is not conservative. From the right hand side of the above equation, we
can see that the unbalanced charge is a function of both the frequency of operation as well as the propagation
angle. The behavior of the residual term is better revealed by examining its Taylor expansion when
Dx = Dy = h! 0. It is
RHS ¼ b
4

~kx
~ky �~k2

x þ ~k2
y

� �
h2 þOðh4Þ ð45Þ
It can be seen that the excess charge is by no means negligible, and as a matter of fact it is on the order of the
numerical error. This last result is an accurate quantitative measure of the artificial charge that the scheme
generates, and it can be used as a criterion to determine whether the algorithm is appropriate for a given
application.

It should be mentioned that an improvement in isotropy can also be achieved by the flux-averaging scheme.
As a matter of fact the matrices in (25) and (43) yield the same determinant which implies that the numerical
dispersion relation in (26) characterizes the flux-averaging scheme as well, or the flux-averaging scheme exhib-
its the same isotropy-dispersion properties. Moreover, recently Koh et al. in [37] proposed an isotropic scheme
which employs a combination of an extended-curl with a flux-averaging scheme. Consequently, in terms of
creating a numerical dispersion relation with improved characteristics all of the above schemes, as well those
referenced in Section 1, are possible qualified candidates. However not all of them preserve the conservative
nature of Maxwell’s equations as characteristically demonstrated previously.

8. A higher order Laplacian realization

8.1. Formulation

In this section the extended-curl formalism is further utilized for the implementation of a higher order
Laplacian (HOL) approximation. An excellent description on general HOL representations can be found in
[38]. Here, we focus on Laplacian representations that utilize a 25-point stencil which are the next possible
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incremental improvement over the 9-point ones. Their favorable trait is that they can be fourth order accurate,
which implies that isotropic properties of sixth order should be expected. Indeed, 25-point Laplacians can
exhibit isotropic phase velocity characteristics up to sixth order, and in contrast to the 9-point ones, there
are more than one realizations that manifest this property [39,29]. We concentrate therefore only on isotropic
25-point Laplacians.

Given that there are multiple isotropic 25-point Laplacian stencils the main issue is to choose the best suited
one for our purposes, that is for use in the FDTD update equations. Here we assume a TEz mode and inves-
tigate the following updating scenario:
Hn
z !

2-point

curl

Ex

Ey

� 
 ���!N -point

ext:-curl
H nþ1

z � r2
xyH

n
z ð46Þ
The primary factor that motivates which updating scenario we consider, is that the extended-curl formalism
dictates that the Ex and Ey update equations remain the same as those of the Yee-scheme. For the current field
mode this is realized through 2-point curl approximations, which create the following correspondences: the
update of an Ex component requires the pair of the vertically placed, upper and lower Hz components. Sim-
ilarly, the update of an Ey component, requires the horizontally placed, left and right Hz components. On that
account, regardless of the extended-curl operator stencil, the information from the Ex and Ey components is
eventually translated into vertical and horizontal Hz pairs. Consequently, one concludes that a 25-point Lapla-
cian can be mapped into FDTD update equations, via an extended-curl operator, if its stencil can be con-
structed, topologically, as a combination of horizontal and vertical, possibly overlapping, Hz pairs.

After experimentation with all possible isotropic Laplacian stencils, it was concluded that the following ren-
dition is the most straightforward to employ:
r2ui;j ¼
1

60h2
�252ui;j þ 52R1 þ 16R2 � R3 � 2R4

� �
þ h4

90
r6ui;j þOðh6Þ ð47Þ
where the R terms are
R1 � uiþ1;j þ ui�1;j þ ui;jþ1 þ ui;j�1 ð48Þ
R2 � uiþ1;jþ1 þ uiþ1;j�1 þ ui�1;j�1 þ ui�1;jþ1 ð49Þ
R3 � uiþ2;j þ ui�2;j þ ui;jþ2 þ ui;j�2 ð50Þ
R4 � uiþ2;jþ1 þ uiþ1;jþ2 þ ui�2;jþ1 þ ui�1;jþ2 ð51Þ

þ ui�2;j�1 þ ui�1;j�2 þ uiþ2;j�1 þ uiþ1;j�2 ð52Þ
and correspond to groups of points that exhibit the same p/2 rotation symmetry. One notices that the above
approximation exhibits fourth order accuracy in space, and its LET is the triharmonic operator. This essen-
tially signifies isotropic phase velocity up to sixth order.

Finally, what needs to be determined is the stencil of the extended-curl operator. The latter needs to be
compatible with both the stencil of the Laplacian under study, and the Yee algorithm updating of Ex and
Ey. Bearing this in mind, it can be easily verified that the spatial operator shown in Fig. 8(a) complies with
both conditions. It is noticed that this is both a longitudinal and a transverse curl extension, as opposed to
the transversely extended only one, presented in Section 3. The corresponding equation can be written as
shown in (53)
dtHzj
nþ1

2

iþ1
2;jþ

1
2

¼ 1

l
B dyEx

��nþ1
2

iþ3
2;jþ

1
2
� dxEy

��nþ1
2

iþ1
2;jþ

3
2

� �
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��nþ1
2

iþ1
2;jþ

1
2
� dxEy

��nþ1
2

iþ1
2;jþ

1
2

� �
þ B dyEx

��nþ1
2

i�1
2;jþ

1
2
� dxEy

��nþ1
2

iþ1
2;j�

1
2

� �h i
� 1
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��nþ1
2
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1
2
� ~dxEy

��nþ1
2

iþ1
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3
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iþ1
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1
2
� ~dxEy

��nþ1
2

iþ1
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1
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� �
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��nþ1
2

i�1
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1
2
� ~dxEy
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2
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ð53Þ
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where
~dxui ¼
uiþ3

2
� ui�3

2

Dx
ð54Þ
The weights A, B, C and D are determined following a procedure analogous to that presented in Section 3.
Hence, by applying Eqs. (7), (8) and (53) during a time-step cycle, one can confirm that the resulting Laplacian
approximation is given by
r2ui;j �
1

h2
½�4Aui;j þ ðA� 2Bþ CÞR1 þ ð2Bþ 2DÞR2 � CR3 � DR4� ð55Þ
Then by equating like terms between the above equation and (55), we get a system of equations which solution
yields A ¼ 63

60
, B ¼ 6

60
, C ¼ 1

60
and D ¼ 2

60
. Eqs. (7), (8) and (53) constitute what we refer to as the HOL-based

scheme. A general remark should be made here that for the reasons described in Section 3 we have ensured
that this HOL-based scheme is consistent with both of Gauss’ laws. Moreover, the HOL-based scheme cannot
be realized in 3-D. However since 2-D analysis is a useful tool in electromagnetics for many important prob-
lems, it is still of great interest to examine the possibility of obtaining hyper-isotropic FDTD formulations in
2-D.

8.2. Dispersion and stability analysis of HOL-based scheme

If we assume a plane wave solution then the numerical dispersion relation for the HOL-based scheme is
found to be
1

cDt
sin

xDt
2

� �
 �2

¼ Sx

Dx

� �2

CAB
y � ð3� 4S2

yÞCCD
x

h i
þ Sy

Dy

� �2

CAB
x � ð3� 4S2

xÞCCD
y

h i
ð56Þ
where CAB
w ¼ Aþ 2B cosð~kwDwÞ and CCD

w ¼ C þ 2D cosð~kwDwÞ. The features of the scheme are better revealed
after Taylor-expanding the above, where we obtain
x
c

� �2

þOðDt2Þ ¼ ~k2
x þ ~k2

y �
1

90
Dx4~k6

x þ Dy4~k6
y þ 3Dx2Dy2 ~k4

x
~k2

y þ ~k2
x
~k4

y

� �h i
þOðDx6Þ þOðDy6Þ ð57Þ
Evidently, the scheme is second order accurate in time and fourth order in space. Notice however that for a
uniform discretization, the LET is the triharmonic operator which ensures numerical phase velocity isotropy
up to 6th order. As previously, 6th order isotropy is not maintained for a non-uniform discretization. For
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comparison purposes, the corresponding Taylor-expanded numerical dispersion relation for the most popular
higher order FDTD scheme, namely the Fang (2, 4) scheme [1], is given by
1 We
x
c

� �2

þOðDt2Þ ¼ ~k2
x þ ~k2

y �
3

320
Dx4~k6

x þ Dy4~k6
y

� �
þOðDx6Þ þOðDy6Þ ð58Þ
This scheme is second order accurate in time and fourth order in space; however, in contrast to (57) the LET is
dependent on the propagation angle. Moreover, it is important to note that the coefficients of the two LETs, of
Eqs. (57) and (58), are of the same order. This is critical because, if the coefficient of the LET in (58) was sub-
stantially less than one, the introduced anisotropy error would be insignificant, and hence the two schemes
would not be comparable in absolute terms.

Furthermore, the stability limit of the HOL-based scheme can be obtained if we solve (57) with respect to
the angular frequency x and require the latter being real for all values of ~kx and ~ky . Accordingly, the time-step
bound that ensures stability is given by
Dt 6

ffiffiffiffiffi
10

9

r
h

c
ffiffiffi
2
p ð59Þ
Notice that for the derivation of the above condition a square cell of size h has been assumed, since for this
type of grids the proposed scheme exhibits its superior characteristics. Additionally, (59) is less restrictive than
the corresponding conditions, for the Yee and the Fang (2, 4) scheme (the time-step bound for the former is
given by Dt 6 h

c
ffiffi
2
p and for the latter by Dt 6 6h

7c
ffiffi
2
p ).

In Fig. 9, where the algebraic1 value of the maximum dispersion error is plotted as a function of the inverse
resolution N�1

k . For all schemes the maximum stable time-step is used. It can be seen that the HOL-based
scheme, as well as the Fang (2,4) deviate positively from the zero dispersion error curve.

These curves are juxtaposed with the ones that correspond to the Yee and the Case 2 scheme, which both
deviate negatively. Moreover, it should be mentioned that the latter two schemes exhibit their optimum behav-
ior at the Courant stability limit, and in particular their dispersion error is upper bounded by the zero disper-
sion error curve. Nevertheless, this is not the case when it comes to the HOL-based, as well as the Fang (2, 4)
scheme. More precisely by reducing the time-step or equivalently by reducing the Courant number, the tem-
poral error can become comparable to the spatial one and even cancel each other out. At this point the dis-
persion error curve exhibits a zero-crossing which means that for the discretization that this occurs, superior
define the algebraic maximum dispersion error f as

jfj ¼ 360
 max
/

1� ~vp

c

���� ����� 

:



A.H. Panaretos et al. / Journal of Computational Physics 227 (2007) 513–536 529
accuracy can be achieved. As a matter of fact, there can be an optimal Courant number which minimizes the
dispersion error over all propagation angles, for a fixed resolution [16]. Its derivation requires the minimiza-
tion of some appropriately chosen quantity. For example if we define as an optimization constraint the min-
imization of the following quantity:
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a

J ¼
Z p=2

0

1� ~vp

c

���� ����d/ ð60Þ
Then by using a simple searching algorithm the Courant number can be determined that guarantees superior
accuracy for a given Nk.

The above optimization procedure was applied to both the HOL-based and the Fang (2,4) scheme, for a
discretization of Nk = 30. The corresponding results are shown in Fig. 10(a) and (b). As regards to the max-
imum dispersion error it can be seen that although both schemes exhibit the same rate of descent, the HOL-
based for the optimized resolution exhibits a deep null which, apparently, indicates almost total elimination of
the dispersion error. Note here that the corresponding Courant numbers are S = 0.0763 and S = 0.0557 for
the HOL-based and the Fang (2,4) scheme, respectively (so these approaches are of limited usefulness for most
practical cases). Additionally in Fig. 10(b) the phase velocity deviation 1� ~vp

c , is depicted at Nk = 30, as a func-
tion of the propagation angle. The HOL-based scheme is substantially more isotropic and from the inset figure
we can see that the magnitude of its phase velocity deviation, is 103 times less than that of the Fang (2, 4).

Finally, the scheme’s performance with respect to the anisotropy error is also depicted in Fig. 11. As
expected the performance of the HOL-based scheme is outstanding. From the same figure we also observe that
although the Case 2 and the Fang (2, 4) are both fourth order isotropic, the former introduces less anisotropy
error.

In conclusion the following points should be emphasized. First of all in Fig. 9 it can be seen that the Fang
(2,4) is less dispersive than the HOL-based scheme. This is attributed to the fact that the LET coefficients may
be of the same order, however the Fang (2, 4) one is slightly smaller, hence it is less dispersive. This is true
provided that the same time integration scheme is applied, meaning that the same amount of temporal discret-
ization error is introduced.

Furthermore it should be mentioned that comparing the HOL-based scheme to the Fang (2, 4) is not abso-
lutely ‘‘fair’’ in terms of Laplacian realizations. In particular, the Fang (2,4) essentially recovers the stencil of a
49-point Laplacian, therefore a ‘‘fair’’ comparison would be against a HOL-based scheme that utilizes an iso-
tropic 49-point Laplacian stencil. Nonetheless, it was demonstrated that just a 25-point Laplacian realization is
sufficient to create an FDTD scheme with performance comparable to that of the Fang (2,4), which clearly indi-
cates that the extended-curl scheme achieves a more efficient stencil utilization. Finally, in Table 2 there is a com-
parison of the actual computational burden of the schemes under study. It can be seen that the extended-curl and
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Table 2
Comparison of computational load

Yee Extended curl Fang (2,4) HOL

FLOPS 11 20 22 34
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the HOL-based scheme are computationally more expensive than the Yee and the Fang scheme, respectively.
For completeness we mention that in 3-D the extended-curl scheme requires 16 flops, while the Yee algorithm
requires 5 flops, per component update.

9. Numerical experiments

9.1. Radiation pattern

In this example we calculate the radiation pattern of two infinite line sources. The sources extend to infinity
along the z-axis, they are located symmetrically with respect to the origin along the y-axis, and they are uni-
formly excited. Given that the distance between the two sources is d then the total magnetic field at a distance
q in the far-field is given by
H ¼ �baz
Im

g

ffiffiffiffiffiffi
jb
8p

r
e�jbqffiffiffi

q
p 2 cos

bd
2

sin /

� �
 �
ð61Þ
Notice that if we choose bd/2 to be odd multiples of p/2, then at / = p/2 and / = 3p/2 the radiation pattern of
this structure exhibits nulls. Now, when trying to model this configuration in FDTD, the destructive interfer-
ence between the two sources along the direction of the nulls, is not exactly predicted due to dispersion. This
implies that the radiation pattern for these angles does not vanish but exhibits some finite value. Moreover, if
the distance between the sources is electrically large, in the direction of the nulls the radiation pattern exhibits
minor lobes whose maximum values can be comparable to that of the actual pattern.

The above scenario was modeled using both the Yee algorithm as well as the Case 2 scheme. A relatively
coarse discretization of k/6 was chosen, and two different distances from the source were examined, namely
2.5k and 5.5k. The excitation of the domain is realized by imposing a soft source condition on the appropriate
Hz components. Since this is a single frequency problem we can take advantage of the isotropic properties of
the Case 2 numerical velocity, and so we optimized it with respect to the dispersion error at the particular dis-
cretization of interest. This was achieved by setting the numerical wavenumber equal to its exact value along
some direction. This can be realized by appropriately scaling the free space material properties. The adjust-
ment was made with respect to the wavenumber along the / = 45� direction, given by



Fig. 12. Radiation pattern predictions of two infinite current sources uniformly excited. Discretization h = k/6.
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The corresponding radiation patterns are shown in Fig. 12(a) and (b). It can be seen that along / = p/2 and / =
3p/2 the Yee-scheme exhibits a spurious minor lobe while the Case 2 scheme does not.

9.2. Waveguide propagation constant

In this example a parallel plate waveguide is modeled. The TEz mode is excited by injecting a z-directed
magnetic field, with a very sharp differentiated Gaussian pulse time dependence. The dimensions of the wave-
guide are 13 by 40 cells, and the cell size is set equal to h = 1 cm. The propagation constant information is
extracted using the following procedure. The time-history of the electric field component Ex is observed along
two transverse planes separated by a distance d = h. The first observation plane is located 10 cells away from
the excitation point. Then, the observed quantities are Fourier transformed, and the information for each
excited mode is obtained by utilizing the orthogonality properties of the field eigenfunctions, that is
Ex ¼ �
jb
kc

An cos
npx
d

� �
e�jby )

Z d

0

Ex cos
mpx

d

� �
dx ¼ � jb

kc
Anpdmne�jby ð63Þ
Then, we divide the integrated quantities for the two observation planes and the ratio is equal to e�jbd, and hence
the values of b can be easily extracted. The propagation constant of the first eight modes is computed using the
Yee, the Case 3, the Fang, and the HOL scheme. The corresponding results are shown in Fig. 13(a)–(d). First, it



Fig. 13. Normalized propagation constant b/b0 versus frequency.
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can be seen that the results corresponding to the Case 3 are in better agreement to the theoretical expected ones
than are the results obtained by the Yee-scheme. It is interesting to note that the Case 3 scheme predicts very
accurately the cut-off frequencies. This is a direct consequence of the fact that at cut-off the waves essentially
propagate along the / = 90� direction where the scheme is dispersionless.

Second, it can be seen that the HOL-based scheme outperforms the Fang scheme. However, on purpose, for
this set of simulations both schemes were operated at the Courant limit of the Fang scheme, that is S ¼ 6h

7c
ffiffi
2
p .

This is because from our experimentation with the dispersion error curves it was found that the HOL-based
scheme, for the above Courant number, exhibits the same dispersion characteristics as the Fang scheme down
to 10 cells per wavelength. But from 3 to 10 cells per wavelength it becomes slightly less dispersive. Indeed,
from Fig. 13(c) and (d) we can seen that up to 3 GHz (k/10) both schemes exhibit the same performance. How-
ever, from 3 GHz to 10 GHz (k/10 to k/3) the HOL-based scheme is in better agreement to the analytical
results. Obviously, if both schemes were operated at their Courant limit, the Fang scheme would yield better
results.

Also, for the modeling of the PEC plates image theory was used. In this case the image principle is easy to
apply due to the simplicity of the geometry (infinite in extent). However, for a continuously varying PEC
boundary the implementation of the image principle is not straightforward and it can be a very laborious pro-
gramming exercise. In these cases, our experimentation revealed that the elementary PEC object where image
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theory is applicable, and yields stable simulations, is a sequence of 3 PEC patches (all four cell edges made out
of PEC). For such an object image theory should be applied only for the PEC patch in the middle.

9.3. Scattering width

In the last example we examine the scattering by infinite (along the z-direction) cylinders of circular cross-
section. Three different cylinders were examined: a dielectric, a PEC and a dielectric coated PEC cylinder. The
first two have a radius of 20 cells. The third one consists of a 15 cell PEC core coated by a 5-cell dielectric shell.
For the first and third cylinder the dielectric material has a permittivity of er = 2. The cell size for all simula-
tions is set equal to k/20. All scatterers are illuminated by a TEz uniform plane wave. In Fig. 14(a), (c) and (e)
there are the scattering width predictions as provided by the Yee and the Case 2 scheme along with the ana-
lytical solution. It can be seen that both schemes exhibit the same accuracy and they are in good agreement
with the analytical solution. Additionally, in Fig. 14(b), (d) and (f) there is the time-domain response of the
scattered field along the backscattered direction. The observation point is located 40 cells away from the center
of the cylinder. Similarly, it can be seen that the Yee and the Case 2 scheme are in excellent agreement. It needs
to be mentioned that for this set of experiments the PEC objects were created using PEC patches. Further-
more, for the Case 2 simulations no special treatment was performed along the material boundaries.

10. Conclusions

We have described a general framework for the design of stable FDTD schemes based on improved approx-
imations of the transverse Laplacian term associated with the curl–curl operator. Depending on the Laplacian
approximation the resulting scheme can be more isotropic, less dispersive and have a higher Courant number
than the conventional Yee algorithm and many of its improvements found in the literature. As a matter of
fact, it was proved that this family of schemes can support a unity Courant number without the corresponding
scheme suffering from grid decoupling.

Representative numerical experiments were performed that verified the theoretically expected behavior.
Furthermore, it was found that due to the extended stencil of the proposed schemes, their performance is
strongly dependent on the accurate modeling of inhomogeneities. For cases where the above is feasible the
proposed schemes yield more accurate results. In any other case, their improved dispersion and anisotropy
characteristics are masked by the errors introduced by the material modeling inaccuracies.

Acknowledgement

This project was funded by DARPA. The authors would like to thank Dr. Ben Mann, DARPA-DSO, and
Dr. Reza Malek-Madani, ONR, for their continued interest and support of this project.

Appendix A

In this section we derive the maximum value of the following quantity:
J ¼ sin2 x
2

� �
aþ 2b cosðyÞ� þ sin2 y

2

� �
½aþ 2b cosðxÞ

h i
ðA:1Þ
given that a + 2b = 1. For simplicity we set
sin2 x
2

� �
� x and sin2 y

2

� �
� y
therefore
J ¼ xð1� 4byÞ þ yð1� 4bxÞ ðA:2Þ

with x,y 2 [0,1]. It is
J ¼ ðA� 4bBÞxþ B ðA:3Þ
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where
A � 1� 4by and B � y
We examine the following cases:

(1) A � 4bB > 0
Then J is monotonically increasing, therefore
J max ¼ Jðx ¼ 1Þ ¼ Aþ ð1� 4bÞB ¼ 1þ ð1� 8bÞy

and
(a) if 1 � 8b > 0 then Jmax = J(x = 1;y = 1) = 2 � 8b;
(b) if 1 � 8b 6 0 then Jmax = J(x = 1;y = 0) = 1.
(2) A � 4bB 6 0
Then J is monotonically decreasing, therefore
J max ¼ Jðx ¼ 0Þ ¼ B ¼ y
and obviously
J max ¼ Jðx ¼ 0; y ¼ 1Þ ¼ 1
We can conclude that
J max ¼ max
b
f1; 2� 8bg; 8b 2 R ðA:4Þ
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